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In this paper we address the problem of calculating the free-state wave functions with predefined asymptotic
behavior. It is shown that, in a number of cases, usable results may be obtained by the WBK~Wentzel-
Brillouin-Kramers! approximation, but not by plain numerical integration of the Schro¨dinger equation if it is
performed with accuracy normally provided by computers. For reference purposes, the calculation based on
algebra implemented inMATHEMATICA ® is done, enabling an arbitrary large number of significant digits to be
used. The WBK-based calculation is found to offer reasonably low errors.@S1063-651X~96!03705-6#

PACS number~s!: 02.70.2c, 03.65.Ge, 03.65.Sq, 73.20.Dx

I. INTRODUCTION

The general method of finding the continuum~free!-state
wave functions in time-independent quantum systems is to
construct the scattering states by iterated use of the Lipmann-
Schwinger equation@1#. A simpler procedure for practical
use is to find the scattering states as linear combinations of
waves in the asymptotic regions of the scattering potential.
The method is generally applicable, regardless of the system
symmetry, although it has been discussed mostly for spheri-
cally symmetric cases@1,2# due to their importance in atomic
physics. The development of advanced technologies of semi-
conductor growth in the last two decades enabled fabrication
of ultrathin quantum-confining structures, usually with plane
symmetry. Finding the free-state wave functions in such
structures is important in studying various physical phenom-
ena@3–5#. This may be done by finding the scattering ma-
trix, from which the wave functions are directly calculated.

An alternative procedure for calculating the wave func-
tions in the continuum is by quasidiscretization, i.e., intro-
duction of box boundary conditions~with distant walls!, well
known from elementary textbooks in quantum mechanics
@6#. This method is straightforwardly applicable only for
symmetric systems with asymptotically bounded potentials.
There are two types of wave functions here—even and
odd—which may exist in the quantization box of lengthL.
As L increases towards infinity, pairs of distinct subsequent
states merge into doubly degenerate states. Handling such
wave functions is usually easier than with propagating
waves, while both choices lead to identical final results. In
the regions with flat potential~set equal to zero for conve-
nience!, the solutions of the Schro¨dinger equation are oscil-
latory in character, their initial phase being unknown at the
beginning. This phase may be found by solving the equation
for the modulation function~the position-dependent wave-
function amplitude!, equivalent to the Schro¨dinger equation.
The method has been used, for instance, in calculating the
self-consistent potential in inversion layers@7#, and
quantum-confined microstructures@8#. It turns out, however,
that in realistic examples the calculation converges only for
small charges accumulated in the well region. Although this
suffices for some systems, such as those having a flat built-in

potential and a modulated effective mass@8#, the majority of
real structures with finite binding potential accumulate a con-
siderable charge in the well region, causing the calculation to
diverge. This is due to a very slowly decaying electrostatic
potential that appears, causing large numerical errors in con-
ventional calculation when integrating the free-state wave
functions, such that their values in the well region are mean-
ingless.

In this paper we first point to the source of such errors
~Sec. II!, and illustrate, on realistic examples, that they can
make the conventional calculation completely useless~Sec.
III !. Furthermore, we discuss how to alleviate the problem by
using the WBK~Liouville-Green! approximation~Sec. IV!.
Thus, instead of solving the Schro¨dinger differential equa-
tion with ‘‘constant tail’’ boundary conditions, it is solved by
using the asymptotic boundary conditions, in the way de-
scribed previously in the Orr-Somerfeld problem@9#. Errors
introduced by the WBK approximation itself are estimated
by an arbitrary large precision algorithm inMATHEMATICA . It
also allows one to estimate the minimum accuracy~the num-
ber of significant digits! that would be necessary to use in the
conventional calculation to guarantee some required accu-
racy of the wave function. Comparison with high-accuracy
reference results obtained byMATHEMATICA indicate that the
double-precision arithmetic on a 32-bit digital computer~16
significant digits! will usually fail to give reliable results in
the conventional implementation, while the WBK method,
although itself approximate, happens to be quite accurate and
reliable for practical purposes. Specific examples are also
provided.

II. AN ANALYTICALLY SOLVABLE EXAMPLE

The wave functionC(z) is to be found by solving the
Schrödinger equation

2
\2

2m

d2C

dz2
1V~z!C~z!5EC~z!. ~1!

Here m denotes the electron mass,V(z) the potential,
E(.0) the electron energy, andz the direction along which
the potential varies~in case of semiconductor quantum wells,
perpendicular to the well layer plane!. The origin is taken in
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the middle of the well. Here we imagine the infinite symmet-
ric structure under consideration to be embedded in a quan-
tizing box, its half length denoted asL. We should note that
L appears in both the wave-function normalizing factor and
in the density of states, and cancels out in any result for
physical quantities. The wave function in regions with flat
potential, i.e., far from the well, takes the form

C~z!5H L21/2cos~kzz1he! ~even state!

L21/2sin~kzz1ho! ~odd state!,
~2!

whereh (e,o) is the initial phase of the even~odd! state, and
kz is the wave number, related to the energy asE5\2k z

2/2m.
One may proceed to use the unity amplitude~unnormalized!
wave function instead of~2!, but the phases are still to be
determined. Instead of solving the full Schro¨dinger equation,
an efficient way to do this is to consider themodulation
function F(z), related to the full wave function as

C~z!5F~z!exp@ i ~kzz1h!#. ~3!

Thus,F(z) describes the deviation of the wave function from
a simple plane wave. The remaining exponential factor in
Eq. ~3! actually enables one to derive the differential equa-
tion in F(z) with no unknown parameters~the initial phases!.
If a form other than exponential was chosen, this advantage
would be lost. The initial phaseh is chosen so as to provide
the required behavior of the wave function at the origin.
Substituting Eq.~3! into ~1!, we find

d2F

dz2
522ikz

dF

dz
1U~z!F, ~4!

whereU(z)52mV(z)/\2. Here we consider the class of po-
tentials that become flat beyond somez5w, i.e., U(z
.w)[0, and the wave functions there have simple periodic
form. The boundary conditions for the modulation function
therefore read

F~w!51,
dF

dzU
z5w

50. ~5!

The modulation functionF(z) is constant in the region
z.w, as directly follows from Eq.~4! with V(z)[0. The
initial phaseh can be found from@8#

tan~he!5
Im~W!

Re~W!
, W5

i

ikzF~0!1F8~z!uz50
~6!

for even states and from

tan~ho!52
Im@F~0!#

Re@F~0!#
~7!

for odd states.
To highlight the source of numerical difficulties described

in Sec. I it is very instructive to consider the case of rectan-
gular potential barrier, its height beingV0 and width 2w
~Fig. 1!. Equations~1! and ~4! can then both be solved ana-
lytically. Here we compare the values of the two functions at

the origin in the limit of very wide barrier layer. Ifwkn@1,
the modulation function corresponding to an energyE,V0
at z50 is given by

F~0!'
1

2 S 12 i
kz
kn

Dexp@~kn1 ikz!w#, ~8!

wherekn5A2mV0 /\
22kz

2. Its amplitude increases with in-
creasing barrier width.

The solution of the Schro¨dinger equation having, for in-
stance, even parity, has the formC5C cosh(knz) inside the
barrier, with

C5Fcosh2~knw!1
kn
2

kz
2 sinh

2~knw!G21/2

. ~9!

For very largew, the wave function atz50 acquires values
much smaller than 1. The even-state wave function may also
be written as

Ce~z!5Re$F~z!exp@ i ~kzz1he!#%

5Re@F~z!#cos~kzz1he!

2Im@F~z!#sin~kzz1he!. ~10!

With both the real and imaginary parts of the wave function
being on their own very large numbers, even a double pre-
cision arithmetic with 16 significant digits may not allow one
to actually evaluate the wave function inside the barrier
within this approach, its small amplitude being a result of
almost complete cancellation of two very large terms.

The relationship between the modulation function and the
wave function is illustrated in Fig. 1. In regions of constant
potential the real part of the modulation function exponen-
tially decays asz increases, tending towards unity, and the
imaginary part also decays exponentially, but tends to zero.
In the case of a very wide barrier the values of the real and
imaginary parts are related according to the expression given
in Fig. 1, and have opposite signs. In contrast to the very

FIG. 1. Qualitative plot of the wave function and the modulation
function in case of a wide rectangular barrier. While real and imagi-
nary parts of the modulation function take values very much ex-
ceeding unity~in absolute value!, their signs are opposite and the
wave function is very small, and difficult for accurate evaluation.
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large values that they acquire, the wave function becomes
diminishingly small, and a large number of significant digits
in the value ofF is really necessary to evaluate the wave
function.

III. THE CONVENTIONAL AND THE ‘‘EXACT’’
CALCULATION

We now consider a realistic case of a symmetric rectan-
gular semiconductor quantum well based on the
GaAs/AlxGa12xAs heterojunction, with the potential in the
barrier, due to self-consistency effects, taken to be of Morse
type ~Fig. 2!:

V~z!5
Vb

12b
@exp~2lz!2b exp~22lz!#, ~11!

where Vb denotes the potential energy at the well-barrier
boundary, while, roughly speaking,l determines the decay
rate, andb the point of the potential extremum. In this case
the solution of Eq.~4! may be found in the form of a series
@7#:

F~z!5(
j50

`

bje
2 jlz. ~12!

From Eq. ~5! it follows that b051. The coefficientb1 is
given by

b15
Vb

12b

1

l222ilkz
, ~13!

and higher-order ones by a recurrence relation

bj5
Vb

12b

bj212bbj22

l j ~l j22ikz!
, j>2. ~14!

The potential inside the well is constant, and the wave func-
tion is of sine or cosine type.

This scheme is an alternative to direct numerical integra-
tion of Eq. ~4!. The accuracy of the results is, however,
easier to control in this procedure than in numerical integra-
tion, which is the main reason it was employed in this work
~also, it is somewhat faster, but otherwise there are no essen-
tial differences between the two!. Yet, in a broad range ofl
andb values, such that the Morse potential varies slowly, it
delivers meaningless results for the wave function inside the
well when calculated in the conventional~FORTRAN REAL*8,
i.e., 8 bytes! implementation. The reason behind this is just
the same as in the case of a rectangular barrier, discussed in
Sec. II: the modulation function acquires such large values
that a part or all of the significant digits necessary for the
initial phase calculation get lost due to truncation errors.

The same procedure can also be built in theMATH-
EMATICA algorithm to take advantage of the arbitrary preci-
sion facility it offers@10# ~at the expense of low speed, how-
ever!. Results obtained that way may therefore be called
‘‘exact.’’ They may give a straight answer to whether any
trust should be put into the outcome of the conventional
~REAL*8! calculation. Additionally, they may serve for test-
ing the accuracy of methods that are approximateper se,
such as the WBK method considered in Sec. IV.

While various methods for estimating the effects of trun-
cation errors exist, e.g., the interval or Karlsruhe arithmetic
@11,12#, in the problem we consider these errors seriously
affect just one expression, and a simple error propagation
analysis will suffice to estimate the necessary precision. The
condition number for the even-state wave-function value at
the origin is given by

eCe~0!5
Re@F~0!#cos~he!eRe@F~0!#

Ce~0!

2
Im@F~0!#sin~he!e Im@F~0!#

Ce~0!
, ~15!

wheree on the right-hand side denotes the relative error of
the quantity its subscript refers to. For the odd wave function
the same quantity is to be determined from

eC
o8uz50

5
Im@F8~z!uz50#cos~ho!e Im@F~0!#

Co8~z!uz50

1
Re@F8~0!uz50#sin~ho!eRe@F~0!#

Co8~z!uz50

1kz
Re@F~0!#cos~ho!eRe@F~0!#

Co8~z!uz50

2kz
Im@F~0!#sin~ho!e Im@F~0!#

Co8~z!uz50
. ~16!

It is assumed in Eqs.~15! and ~16! that both sin~h! and
cos~h! are determined accurately. If any of the terms in~15!
or ~16! exceeds unity in magnitude, errors tend to amplify in
the course of calculation, making it ill conditioned@11#. It
turns out, practically, that ill conditioning appears in the case
of slowly varying potentials. Assuming the relative errors of

FIG. 2. An example of the potential used to check the validity of
the conventional and the ‘‘exact’’MATHEMATICA calculation of
free-state wave functions, and also for finding the accuracy of the
WBK approximation in this problem~Sec. IV!. The potential is flat
inside the well (uzu,d), and of Morse form outside (uzu.d). The
right turning pointz0 is also indicated. Due to symmetry, the Schro¨-
dinger equation or the equivalent equation for the modulation func-
tion should really be solved only on the intervalzP[0,`).
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the input quantities are all equal, approximating the denomi-
nator of the right-hand side of the resulting expression by its
geometric mean value, and replacing cos2 h and sin2 h with
their average, we find from Eqs.~15! and ~16! a rough esti-

mate of the precision~number of significant digits in com-
putation required to give one significant digit correct! for the
wave function, or slope of the wave function, at the origin:

R15H log10uF~0!/Ce~0!u for even states
1
2 log10$@ uFo8~z!uz50u21kz

2uF~0!u2#/uCo8~z!uz50u2% for odd states.
~17!

Two constant terms, log10 5 for even states and2 1
2 log10 8

for odd states, were neglected in comparison to the displayed
terms in Eq.~17!, which proved justified in all realistic situ-
ations.

IV. WBK CALCULATION

The difficulties that arise in finding the free-state wave
functions, described in Secs. II and III may be alleviated by
resorting to an approximate solution of the Schro¨dinger
equation, given by the WBK method, instead of attempting
to solve the exact Schro¨dinger equation~in whatever form!.
Consider the potential as given in Fig. 2. Denoting the right
turning point coordinate asz0 , the wave function in the re-
gion z.z0 may be generally written as@13#

C~z.z0!5
A

Ak~z!
cosS E

z0

z

k~z8!dz82
p

4 D
1

B

Ak~z!
sinS E

z0

z

k~z8!dz82
p

4 D
~18!

or, in case of even states, as

C~z.z0!5
G

Ak~z!
cosS E

z0

z

k~z8!dz81heD . ~19!

Herek(z) is the electron wave vector calculated atz, and it
follows directly from ~5! and the required pure oscillatory
behavior of the wave function at infinite distances from the
well center that

G5Akz. ~20!

The boundary conditions at the well-barrier interface atz5d
require both the growing and decaying components of the
wave function to be taken into account, although the wave
function is growing in the regiond,z,z0 . At z5d the
wave function is given by

C~d!52
A

Auk~d!u
exp~ I d!1

B

2Auk~d!u
exp~2I d! ~21!

and its first derivative is

dC

dzU
z5d

5S 1

2Auk~d!u

duk~z!u
dz U

z5d

1Auk~d!u D exp~ I d!A
1
1

2 S 2
1

2Auk~d!u

duk~z!u
dz U

z5d

1Auk~d!u D exp~2I d!B, ~22!

where

I d5E
d

z0
uk~z8!udz8. ~23!

In the interior region2d,z,d first one has to find the
wave functionC ( i )(z) ~either numerically, or, if possible,
analytically!, with some preset value of the even-state wave-
function amplitude atz50. Values ofA and B are then
calculated by matching this solution to the WBK one at
z5d, i.e.,

c11A1c12B5C~ i !~d!, ~24!

c21A1c22B5
dC~ i !

dz U
z5d

, ~25!

where the coefficientsci j are given by Eqs.~21! and ~22!.
This procedure is iterated until one gets, within an acceptable
accuracy, that

A21B22G250 ~26!

by an appropriate choice of the wave-function amplitude at
z50. The wave-function initial phase is then calculated from

he5I f~w!2kzw22pF IntS I z02kzw

2p D21G , ~27!

where

I z05E
z0

w

k~z!dz ~28!

and

I f~z!5E
z0

z

k~z!dz2
p

4
1arctanS 2A

B D . ~29!
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Herew denotes a suitably chosen value ofz, such that the
potential there becomes negligible, and the wave function
acquires a simple harmonic behavior~Fig. 2!. The function
I f(z) is represented schematically in Fig. 3. In the region
z.w the wave number is constant, andI f increases linearly
with z. The initial phase, up to an integer multiple ofp, is
actually the distance betweenI f(z) andkzz lines, measured
in the direction ofI f . The phase, strictly speaking, may be
viewed as a continuous function of energy, or of the free
electron wave vectorkz , and then the additional multiple of
p to be added may be found from Levinson’s theorem, ac-
cording to the number of bound states in the well forkz50
@14,15#. However, since we aim at estimating the accuracy of
the initial phase, it is convenient to allow its values in the
range@2p,1p# only, since a phase shift bynp, nPZ, does
not affect the wave functions or the electron density.

For odd states the procedure is quite similar, except that it
is the wave-function derivative, not the amplitude, that is
preset atz50. The initial phase is evaluated from Eq.~27!,
but with theI f function defined differently, now reading

I f~z!5E
z0

z

k~z!dz2
p

4
1arctanSBAD . ~30!

Algorithmic steps in calculating the initial phase are dis-
played in Fig. 4.

In this formulation there are no cancellations of numbers
very close to each other, which would bring about numerical
difficulties as described in Secs. II and III. The only problem
with the WBK method is that it is intrinsically approximate,
and its accuracy should be tested against the ‘‘exact’’ results
in a range of interesting cases.

V. NUMERICAL RESULTS AND DISCUSSION

For the purpose of numerical testing of the conventional
and the WBK approach, we have performed a calculation for
a realistic quantum-well structure, as given in Fig. 2. The
values of the structure parameters used in numerical calcula-
tions are the particle massm50.067m0 , wherem0 is the free
electron mass, corresponding to the electron effective mass
in GaAs, the built-in potentialV050.162 eV, corresponding

to the GaAs/Al0.2Ga0.8As interface atT5300 K, the well
width 2d55 nm, and the Morse potential parameters
Vb50.1 eV andb50.4 ~the potential outside the well is then
decaying for anyl.0!. The electron wave vector in the bulk
is taken askz50.1 nm21. Results obtained via the ‘‘exact’’
calculation, for various values ofl, are compared against
those obtained within the approximate WBK calculation.
The numerical value of\2/2m0 is approximately taken as
0.0381 eV nm2, convenient forMATHEMATICA computation
with rational numbers. With this set of values taken, it turns
out that other quantities entering the calculation, if expressed
in nanometers, should be inserted as pure numbers~dimen-
sionless!.

To illustrate the complete failure of the conventional ap-
proach~with REAL*8 arithmetic! to this problem, in Fig. 5 we
present the amplitudes of the even-state wave function and
the modulation function~or their derivatives for odd states!,
as calculated in the well center, using the conventional and
the MATHEMATICA algorithm. The modulation function
found by the conventional calculation is quite accurate, but it
is still useless for evaluating the wave function, due to trun-
cation errors. Not only is the wave function inside the well
grossly incorrect~compare with the ‘‘exact’’MATHEMATICA
values in Fig. 5!, but also its behavior, as the parameterl
varies, is unphysical. With decreasingl, i.e., widening the

FIG. 3. Qualitative plot of the functionI f (z), as defined in the
text.

FIG. 4. The block diagram of the algorithm for calculation of
wave functions with required asymptotic behavior, and of the initial
phases of even and odd states, using the WBK approximation.
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barrier, the wave function inside the well, as calculated in the
conventional way, increases, while in fact it should decrease,
as confirmed by the ‘‘exact’’ calculation inMATHEMATICA .

The relative errors occurring in the WBK calculation of
the wave-function amplitude~derivative! at z50 for even
~odd! states are given in Fig. 6. The range ofl values~0.004
,l,0.03! was chosen so that ‘‘exact’’ results truncated to
200 significant digits could be obtained from theMATH-
EMATICA program. Lower values ofl ~,0.004! would lead
to excessive memory requirements due to both a very large
number~over 650! of bj coefficients, Eq.~14!, and a large
number of digits~.200! to be used. Forl.0.03 the WBK
errors are larger, but good results may be obtained by plain
numerical integration of the Schro¨dinger equation~with
REAL*8 arithmetic!, so this case needs no further consider-
ations. The upper limit for thel parameter where the WBK
approximation may still be used decreases as the electron
wave vector~energy! increases. This is accompanied by an
increase of the wave-function modulus in the central region,
and the conventional numerical integration of the Schro¨-
dinger equation may then be used.

As depicted in Fig. 6~a!, the error in the even-state wave
function has a fast~almost exponential! rise asl increases.
This error is negligible for small values ofl, i.e., the slowly
decaying wave function, as is indeed expected for the WBK
method. In the range ofl values stated above, the even-
~odd-! state wave-function amplitudes~derivatives! in the
well center are always low, meaning essentially complete
depletion of the central region. This is because only low-
lying free states contribute significantly to the charge den-
sity, and the corresponding wave functions have very small
values in the vicinity of the well, due to a slowly decaying
repulsive self-consistent potential. To give a numerical ex-
ample, forl50.004~which is the typical value ofl found in
the first few iterations of the previously developed self-
consistent procedure@8#! the wave-function amplitude varies
from 10275 at z50 to the order of unit atz5841 ~the right

turning point!. It is interesting to note that errors of even-
state wave functions grossly exceed those of odd states. As
displayed in Fig. 6~b!, these latter increase approximately
linearly with l. The different behavior of the two is related
to differences in their nature and conditions for using the
WBK approximation.

As for the modulation function, it acquires very large val-
ues in the above range ofl. For example, withl50.004 the
modulation function amplitude is as large as 1077, and using
16 significant digits in calculation hardly makes any sense
because the full wave-function amplitude is of the order of
10275. In Fig. 7 we giveR1 , Eqs.~15! and ~16!, as it varies
with thel parameter. This number decreases with increasing
l ~and also depends somewhat on energy!, but generally is
quite large, and indicates the necessity of using WBK-based
calculation in order to get valid results.

The even- and odd-state initial phases as calculated by the
‘‘exact’’ ~MATHEMATICA ! and WBK method, denoted by su-
perscriptsMATH and WBK, respectively, are given in Table
I. Since the phase is determined to within a factornp, nPZ,

FIG. 5. Amplitudes of the wave function and the modulation
function ~for even state! and the derivatives of these quantities~for
odd states! in the well center, calculated by the conventional
~REAL*8! and the ‘‘exact’’ MATHEMATICA ~MATH! approach for a
range of values ofl in the Morse potential.

FIG. 6. The relative errors of the even-state wave-function am-
plitude ~a!, and the odd-state wave-function derivative~b!, both
taken at the quantum-well center, as they depend on thel parameter
in the Morse potential.
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the accuracy of this calculation may be judged only from the
absolute error. One can see from Table I that there is good
agreement between the two approaches for all values ofl
considered, more so ifl is smaller, and hence the potential
variation slower, which is the usual situation where the
WBK approximation works best.

VI. CONCLUSION

The usefulness and accuracy of the WBK approximation
for calculating the continuous spectrum wave functions is

explored. By comparison with high-precision calculations
performed inMATHEMATICA we have shown that in a class of
Morse potentials where plain integration of the Schro¨dinger
equation fails, the WBK method delivers reasonably accurate
results for the wave functions. Furthermore, the precision of
the conventional calculation required to get~at least! one
significant digit in the final result correct is estimated.
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TABLE I. The even-(e) and odd-(o) state phases~in radians!,
as calculated by an ‘‘exact’’MATHEMATICA ~MATH! and an approxi-
mate WBK approach.

l ~nm21! he
MATH he

WBK ho
MATH ho

WBK

0.004 20.06458 20.06301 1.50621 1.50778
0.006 1.70490 1.70725 23.00749 23.00514
0.008 20.55235 20.54921 1.01845 1.02159
0.010 3.11954 3.12347 21.59285 21.58892
0.012 22.81038 22.80566 21.23958 21.23487
0.014 1.92972 1.93522 22.78267 22.77717
0.016 20.79858 20.79230 0.77221 0.77849
0.018 1.96615 1.97321 22.74624 22.73917
0.020 22.10541 22.09756 20.53462 20.52676
0.022 20.29604 20.28740 1.27475 1.28339
0.024 1.21163 1.22106 2.78243 2.79186
0.026 2.48724 2.49745 22.22515 22.21494
0.028 22.70268 22.69168 21.13189 21.12089
0.030 21.75529 21.74350 20.18450 20.17271
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