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Electron-wave-function calculation in the continuous part of the spectrum:
The case of slowly varying potential asymptotics
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In this paper we address the problem of calculating the free-state wave functions with predefined asymptotic
behavior. It is shown that, in a number of cases, usable results may be obtained by thé \W¢Rkzel-
Brillouin-Kramerg approximation, but not by plain numerical integration of the Sdhger equation if it is
performed with accuracy normally provided by computers. For reference purposes, the calculation based on
algebra implemented imaTHEMATICA® is done, enabling an arbitrary large number of significant digits to be
used. The WBK-based calculation is found to offer reasonably low efi8i€63-651X96)03705-¢

PACS numbgs): 02.70—-c, 03.65.Ge, 03.65.Sq, 73.20.Dx

I. INTRODUCTION potential and a modulated effective m&8% the majority of
real structures with finite binding potential accumulate a con-
The general method of finding the continufree)-state  siderable charge in the well region, causing the calculation to
wave functions in time-independent quantum systems is téliverge. This is due to a very slowly decaying electrostatic
construct the scattering states by iterated use of the Lipmanotential that appears, causing large numerical errors in con-
Schwinger equatiol]. A simpler procedure for practical ventignal calculation when integrating the fre_e-state wave
use is to find the scattering states as linear combinations d#nctions, such that their values in the well region are mean-
waves in the asymptotic regions of the scattering potentiaingless. , ,
The method is generally applicable, regardless of the system " this paper we first point to the source of such errors
symmetry, although it has been discussed mostly for spher Sec. 1), and |IIust_rate, on realls_tlc examples, that they can
cally symmetric cased,2] due to their importance in atomic make the conventlona_l calculation compl_etely uselEe.
physics. The development of advanced technologies of SemIII_I ). Furthermore, we discuss how to alleviate the problem by

conductor growth in the last two decades enabled fabricatiorl?j,‘:"'ung tiﬂit!ﬁ% fclﬁy/li!Z_?rfgegc%@;?rgi?fgfgr(uﬁf'emé-
of ultrathin quantum-confining structures, usually with plane '

Eindi he f ¢ . . tion with “constant tail” boundary conditions, it is solved by
symmetry. Finding the free-state wave functions in Sucr].lsing the asymptotic boundary conditions, in the way de-

structures is important in studylng_va_rlous physical Phenom'scribed previously in the Orr-Somerfeld problégi. Errors
ena[3-5]. This may be done by finding the scattering ma-iniroduced by the WBK approximation itself are estimated
trix, from which the wave functions are directly calculated. by an arbitrary large precision algorithmyMATHEMATICA . It

An alternative procedure for Calculating the wave fUnC'a|So allows one to estimate the minimum accuraby num-
tions in the continuum is by quasidiscretization, i.e., intro-per of significant digitsthat would be necessary to use in the
duction of box boundary conditior(aith distant wallg, well  conventional calculation to guarantee some required accu-
known from elementary textbooks in quantum mechanicsacy of the wave function. Comparison with high-accuracy
[6]. This method is straightforwardly applicable only for reference results obtained MATHEMATICA indicate that the
symmetric systems with asymptotically bounded potentialsdouble-precision arithmetic on a 32-bit digital computes
There are two types of wave functions here—even andignificant digitg will usually fail to give reliable results in
odd—which may exist in the quantization box of lendgth  the conventional implementation, while the WBK method,
As L increases towards infinity, pairs of distinct subsequenglthough itself approximate, happens to be quite accurate and
states merge into doubly degenerate states. Handling suchliable for practical purposes. Specific examples are also
wave functions is usually easier than with propagatingprovided.
waves, while both choices lead to identical final results. In
the regions with flat potentiglset equal to zero for conve- 1. AN ANALYTICALLY SOLVABLE EXAMPLE
nience, the solutions of the Schdinger equation are oscil-
latory in character, their initial phase being unknown at the The wave function¥(z) is to be found by solving the
beginning. This phase may be found by solving the equatiofchralinger equation
for the modulation functior(the position-dependent wave- )
function amplitudg equivalent to the Schdinger equation. _ ﬁ_ a v
The method has been used, for instance, in calculating the 2m dZ
self-consistent potential in inversion layerg7], and
guantum-confined microstructurf8]. It turns out, however, Here m denotes the electron mas¥,(z) the potential,
that in realistic examples the calculation converges only fole(>0) the electron energy, armthe direction along which
small charges accumulated in the well region. Although thighe potential variegin case of semiconductor quantum wells,
suffices for some systems, such as those having a flat built-iperpendicular to the well layer plandhe origin is taken in

d?v
+V(2)¥(2)=EV¥(2). )
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the middle of the well. Here we imagine the infinite symmet-

ric structure under consideration to be embedded in a quan-

tizing box, its half length denoted &s We should note that

L appears in both the wave-function normalizing factor and
in the density of states, and cancels out in any result for

physical quantities. The wave function in regions with flat
potential, i.e., far from the well, takes the form

L~ Y2cog k,z+ 7e)
L~ Y2%sin(k,z+ 7,)

(even statg

¥ ()= (odd state,

)

where 7 o) is the initial phase of the evefodd) state, and
k, is the wave number, related to the energyeast; >k 2/2m.
One may proceed to use the unity amplitydanormalized
wave function instead of2), but the phases are still to be
determined. Instead of solving the full ScHioger equation,
an efficient way to do this is to consider tmeodulation
function Hz), related to the full wave function as

©)

Thus,F(z) describes the deviation of the wave function from

Y (z)=F(z)exdi(k,z+ 7)].
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FIG. 1. Qualitative plot of the wave function and the modulation
function in case of a wide rectangular barrier. While real and imagi-
nary parts of the modulation function take values very much ex-
ceeding unity(in absolute valug their signs are opposite and the
wave function is very small, and difficult for accurate evaluation.

a simple plane wave. The remaining exponential factor irthe origin in the limit of very wide barrier layer. Wk,>1,
Eqg. (3) actually enables one to derive the differential equathe modulation function corresponding to an enekyyV,

tion in F(z) with no unknown paramete(the initial phases

atz=0 is given by

If a form other than exponential was chosen, this advantage

would be lost. The initial phase is chosen so as to provide
the required behavior of the wave function at the origin.
Substituting Eq(3) into (1), we find

d’F
dzZ

dF
—2ikZ—Z+U(z)F, (4)

whereU(z) =2mV(z)/#%2. Here we consider the class of po-
tentials that become flat beyond somze=w, i.e., U(z

>w)=0, and the wave functions there have simple periodic

form. The boundary conditions for the modulation function
therefore read

F(w)=1, ©)

dz| _

=W
The modulation functionF(z) is constant in the region
z>w, as directly follows from Eq(4) with V(z)=0. The
initial phase can be found froni8]

) 3 Im(W) 3 i ®
)= Rew) VTGO FF (2,0
for even states and from
Im[F(0)]
tan(7,) = — RAF(0)] (7

for odd states.
To highlight the source of numerical difficulties described

F(O)%%(l—i %)exp{(kn—kikz)w], (8

wherek,=v2mV, /42— kzz. Its amplitude increases with in-
creasing barrier width.

The solution of the Schdinger equation having, for in-
stance, even parity, has the fot= C coshk,z) inside the
barrier, with

2

k —-1/2
C=| cost(k,w)+ E; sinﬁ(knw)} . 9)

For very largew, the wave function at=0 acquires values
much smaller than 1. The even-state wave function may also
be written as

Ve(2) =Re[F(z)exfi(kz+ 7e) I}
=Re F(z)]cogk,z+ 7)
—Im[F(z)]sin(k,z+ 7).

With both the real and imaginary parts of the wave function
being on their own very large numbers, even a double pre-
cision arithmetic with 16 significant digits may not allow one
to actually evaluate the wave function inside the barrier
within this approach, its small amplitude being a result of
almost complete cancellation of two very large terms.

The relationship between the modulation function and the
wave function is illustrated in Fig. 1. In regions of constant
potential the real part of the modulation function exponen-
tially decays as increases, tending towards unity, and the

(10

in Sec. | it is very instructive to consider the case of rectanimaginary part also decays exponentially, but tends to zero.

gular potential barrier, its height being, and width 2v
(Fig. 1). Equations(1) and(4) can then both be solved ana-

In the case of a very wide barrier the values of the real and
imaginary parts are related according to the expression given

lytically. Here we compare the values of the two functions atin Fig. 1, and have opposite signs. In contrast to the very
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The potential inside the well is constant, and the wave func-
tion is of sine or cosine type.

This scheme is an alternative to direct numerical integra-
tion of Eq. (4). The accuracy of the results is, however,
easier to control in this procedure than in numerical integra-

— tion, which is the main reason it was employed in this work
: e (also, it is somewhat faster, but otherwise there are no essen-
v tial differences between the twoyet, in a broad range of
V(| >d= 1_bﬁ and B values, such that the Morse potential varies slowly, it
x[exp(- A2)- exp(-2 12)] delivers meaningless results for the wave function inside the
well when calculated in the convention&@ORTRAN REAL*8,

i.e., 8 byteg implementation. The reason behind this is just

\\ the same as in the case of a rectangular barrier, discussed in

V(2| <=V, -V, Sec. II: the modulation function acquires such large values
that a part or all of the significant digits necessary for the
initial phase calculation get lost due to truncation errors.

FIG. 2. A_n example of the potential used to check the yalidity of  The same procedure can also be built in theTH-

the conventional anq the “exact’MATHEl_leT_mA calculation of  -yvaTicA algorithm to take advantage of the arbitrary preci-

free-state wave f_unc_tlons_, and also for finding the accuracy of th%ion facility it offers[10] (at the expense of low speed, how-

WBK approximation in this problertSec. IV). The potentialis flat o) ~Results obtained that way may therefore be called

inside the well [z|<d), and of Morse form outside|£|>d). The “exact.” They may give a straight answer to whether any

rlght turning |_00|mz0 is also '|nd|cated. Dge to symmetry, the_Schro trust should be put into the outcome of the conventional
dinger equation or the equivalent equation for the modulation func-

tion should really be solved only on the intenzat [0,%). _(REAL*S) calculation. Additionally, they may serve for test-
ing the accuracy of methods that are approximaee se

large values that they acquire, the wave function become§uch as the .WBK method conS|d_ereq in Sec. IV.
While various methods for estimating the effects of trun-

diminishingly small, and a large number of significant digits . ! i ) .
oy g 9 9 cation errors exist, e.g., the interval or Karlsruhe arithmetic

:‘Er;{?t(iaox.alue ofF is really necessary to evaluate the Wave[ll,lﬂ, in the problem we consider these errors seriously
affect just one expression, and a simple error propagation

analysis will suffice to estimate the necessary precision. The

condition number for the even-state wave-function value at

the origin is given by

We now consider a realistic case of a symmetric rectan-

V()

Ill. THE CONVENTIONAL AND THE “EXACT”
CALCULATION

gular semiconductor quantum well based on the € _ R F(0)]cod 7¢) €rgr0))

GaAs/ALGa _,As heterojunction, with the potential in the Tel0) V,(0)

barrier, due to self-consistency effects, taken to be of Morse :

type (Fig. 2): _ IM[F(0)]sin(7e) €imr(0); (15
Ve(0) ’

Vy
V(z)= -3 [exp(—Az)—B exp(—2\2)], (11)  wheree on the right-hand side denotes the relative error of
the quantity its subscript refers to. For the odd wave function

where V, denotes the potential energy at the well-barriert® Same quantity is to be determined from

boundary, while, roughly speaking, determines the decay

rate, andB the point of the potential extremum. In this case €pr = IM[F" (2)]=01¢08 70) €imiF (o))
the solution of Eq(4) may be found in the form of a series olz=0 V(2)|,-0
[7]: , .
REF'(0)|,=0lSIN( 7o) €rgr (0]
- . V4(2) =0
F(2)=2, bje (12) oIz
=0 RE F(0)]cos 7,) €rgr (o))
z !
From Eq.(5) it follows that by=1. The coefficientb, is Yo(2)]z-0
given by v IMm[F(0)]sin(7,) €im{F (0)] 16
Nz 1 s ’ Vo(2)|,=0 '
71— B N?=2irk,’ (13

It is assumed in Eqs(15) and (16) that both sif7) and
cogn) are determined accurately. If any of the term41B)
or (16) exceeds unity in magnitude, errors tend to amplify in
the course of calculation, making it ill condition¢d1]. It
b = Vo bel__ ﬂb_i*2 j=2 (149  turnsout, practically, that ill conditioning appears in the case
P 1-B Nj(Nj—2iky)’ of slowly varying potentials. Assuming the relative errors of

and higher-order ones by a recurrence relation
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the input quantities are all equal, approximating the denomimate of the precisiofinumber of significant digits in com-
nator of the right-hand side of the resulting expression by itgutation required to give one significant digit corpefctr the
geometric mean value, and replacingTgsand sif » with  wave function, or slope of the wave function, at the origin:
their average, we find from Eqél5) and(16) a rough esti-

log,o F(0)/¥(0)| for even states

R,= , , 1
1= £ 10gigl[[F 42502+ KEIF ()2 WL(2)],-olZ} for odd states. A

Two constant terms, lgg5 for even states ane 3 log;, 8

for odd states, were neglected in comparison to the displayed e
terms in Eq.(17), which proved justified in all realistic situ- z
ations.

1 dk@)|
- +VIk(d)] | exp(l4)A
» (le(d)l az | |) e

3(_ 1 dk@)|
2Jk(d)] 9z | _,

+
IV. WBK CALCULATION 2

The difficulties that arise in finding the free-state wave
functions, described in Secs. Il and Ill may be alleviated by + |k(d)|)exp(—ld)B, (22
resorting to an approximate solution of the Sdinger
equation, given by the WBK method, instead of attempting
to solve the exact Schdinger equatior(in whatever forn. ~ where
Consider the potential as given in Fig. 2. Denoting the right ,
turning point coordinate a%,, the wave function in the re- Id:f 0|k(z’)|dz’. (23)
gion 2>z, may be generally written d4.3] d

A , - In the interior region—d<z<d first one has to find the
V(z>270)= —— COS(f k(z’)dz’——) wave functionW¥ ;y(z) (either numerically, or, if possible,
z 20 analytically), with some preset value of the even-state wave-
Vk(z) 4 lytically, with lue of th
function amplitude atz=0. Values of A and B are then
B 2 - calculated by matching this solution to the WBK one at
+ sin J k(z')dz'— — z=d, i.e.,
vk(2) ( 2 ) 4)
(18) CuA+CpB=Y)(d), (24)
or, in case of even states, as dv

+ = —_—
CoA+CoB=— ) (25)

. 19 where the coefficients;; are given by Egs(21) and (22).
This procedure is iterated until one gets, within an acceptable
accuracy, that

V(z>zp)= % cos( fzk(z’)dz’ + 7¢
29

Herek(z) is the electron wave vector calculatedzatand it

follows directly from (5) and the required pure oscillatory A2+B2-G2=0 (26)
behavior of the wave function at infinite distances from the
well center that by an appropriate choice of the wave-function amplitude at
z=0. The wave-function initial phase is then calculated from
G=k,. (20) L kw
7e= (W) —kw—27| Int| ———| —1]|, (27
The boundary conditions at the well-barrier interface-at 2m
require both the growing and decaying components of the h
wave function to be taken into account, although the wave'/ere
function is growing in the regiomd<z<z,. At z=d the w
wave function is given by |zo=f k(z)dz (28
z0
\P(d)=—Lexmd)+Lexq—ld) (2 and
VIk(d)| 2/[k(d)| , - A
l¢(z =f k(z dz——+arctar{—). 29
and its first derivative is (2 20 2 4 B 9
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[f
START

Evaluation of the
coefficients ¢;, ¢y, €y, €y

Finding numerical solution
in the well region

Solving the system of
linear equations for
variables A and B

FIG. 3. Qualitative plot of the functiohs(z), as defined in the
text.

Herew denotes a suitably chosen valuemfsuch that the YES, exit

potential there becomes negligible, and the wave function Check if A’+B"-G’=0
acquires a simple harmonic behavigiig. 2). The function

I¢(2) is represented schematically in Fig. 3. In the region NO, continue
z>w the wave number is constant, ahdincreases linearly Iteration

with z. The initial phase, up to an integer multiple of is 17

actually the distance betweég(z) andk,z lines, measured

in the direction ofl ;. The phase, strictly speaking, may be
viewed as a continuous function of energy, or of the free
electron wave vectok,, and then the additional multiple of END
7 to be added may be found from Levinson’s theorem, ac-
cording to the number of bound states in the well Kgr=0
[14,15. However, since we aim at estimating the accuracy of
the initial phase, it is convenient to allow its values in the

range[ —,+] only, since a phase shift byrr, n EZ{ does wave functions with required asymptotic behavior, and of the initial
not affect the wave functions or the electron density. phases of even and odd states, using the WBK approximation.
For odd states the procedure is quite similar, except that it
is the wave-function derivative, not the amplitude, that iStg the GaAs/A} Ga As interface atT=300 K, the well
preset az=0. The initial phase is evaluated from EQ7),  width 2d=5 nm, and the Morse potential parameters
but with thel function defined differently, now reading v, =0.1 eV and8=0.4 (the potential outside the well is then
decaying for any\>0). The electron wave vector in the bulk
_ (30) is taken ak,=0.1 nm %. Results obtained via the “exact”
calculation, for various values of, are compared against
those obtained within the approximate WBK calculation.
Algorithmic steps in calculating the initial phase are dis-The numerical value of:?/2m, is approximately taken as
played in Fig. 4. 0.0381 eV nrh, convenient foMATHEMATICA computation
In this formulation there are no cancellations of numberswith rational numbers. With this set of values taken, it turns
very close to each other, which would bring about numericabut that other quantities entering the calculation, if expressed
difficulties as described in Secs. Il and Ill. The only problemin nanometers, should be inserted as pure numfansen-
with the WBK method is that it is intrinsically approximate, sionless.
and its accuracy should be tested against the “exact” results To illustrate the complete failure of the conventional ap-

FIG. 4. The block diagram of the algorithm for calculation of

| —fk dz— = 5
i(z2)= o (2) z—z+arcta x

in a range of interesting cases. proach(with REAL+8 arithmetig to this problem, in Fig. 5 we
present the amplitudes of the even-state wave function and
V. NUMERICAL RESULTS AND DISCUSSION the modulation functiorfor their derivatives for odd statgs

as calculated in the well center, using the conventional and

For the purpose of numerical testing of the conventionathe MATHEMATICA algorithm. The modulation function
and the WBK approach, we have performed a calculation fofound by the conventional calculation is quite accurate, but it
a realistic quantum-well structure, as given in Fig. 2. Theis still useless for evaluating the wave function, due to trun-
values of the structure parameters used in numerical calcul&ation errors. Not only is the wave function inside the well
tions are the particle mass=0.06M,, wherem, is the free  grossly incorreccompare with the “exact’"MATHEMATICA
electron mass, corresponding to the electron effective masslues in Fig. %, but also its behavior, as the parameter
in GaAs, the built-in potentia/;=0.162 eV, corresponding varies, is unphysical. With decreasing i.e., widening the
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A (nm™) A (nm™)
FIG. 5. Amplitudes of the wave function and the modulation 0.35 T T T ' T '
function (for even statpand the derivatives of these quantitiésr (b)
odd states in the well center, calculated by the conventional 0.30[ 7
(REAL*8) and the “exact” MATHEMATICA (MATH) approach for a
range of values ok in the Morse potential. 0.25F .

barrier, the wave function inside the well, as calculated in the
conventional way, increases, while in fact it should decrease,

error (%)
o
5]

as confirmed by the “exact” calculation IMATHEMATICA . 0.15F - .
The relative errors occurring in the WBK calculation of /

the wave-function amplitudéderivative at z=0 for even 010" e .

(odd) states are given in Fig. 6. The rangexofalues(0.004 v

<\<0.03 was chosen so that “exact” results truncated to 0.05F / .

200 significant digits could be obtained from tiveTH-
EMATICA program. Lower values af (<0.004 would lead 0.00 1 L L ' L L
to excessive memory requirements due to both a very large 0.000 0.005 0.010 0015 _(1)4020 0.025 0.030
number (over 650 of b; coefficients, Eq(14), and a large A (nm™)
number of digits(>200) to be used. Foik>0.03 the WBK
errors are larger, but good results may be obtained by plain FIG. 6. The relative errors of the even-state wave-function am-
numerical integration of the Schiimger equation(with  plitude (&), and the odd-state wave-function derivatit®, both
REAL*8 arithmetig, so this case needs no further consider-taken at the quantum-well center, as they depend on fierameter
ations. The upper limit for tha parameter where the WBK in the Morse potential.
approximation may still be used decreases as the electron
wave vector(energy increases. This is accompanied by anturning poinj. It is interesting to note that errors of even-
increase of the wave-function modulus in the central regionstate wave functions grossly exceed those of odd states. As
and the conventional numerical integration of the Sehrodisplayed in Fig. @), these latter increase approximately
dinger equation may then be used. linearly with . The different behavior of the two is related
As depicted in Fig. @), the error in the even-state wave to differences in their nature and conditions for using the
function has a fasfalmost exponentialrise as\ increases. WBK approximation.
This error is negligible for small values a&f i.e., the slowly As for the modulation function, it acquires very large val-
decaying wave function, as is indeed expected for the WBKues in the above range af For example, withh=0.004 the
method. In the range ok values stated above, the even- modulation function amplitude is as large as1@nd using
(odd) state wave-function amplitude@erivative$ in the 16 significant digits in calculation hardly makes any sense
well center are always low, meaning essentially completdecause the full wave-function amplitude is of the order of
depletion of the central region. This is because only low-10"". In Fig. 7 we giveR;, Egs.(15) and(16), as it varies
lying free states contribute significantly to the charge denwith the A parameter. This number decreases with increasing
sity, and the corresponding wave functions have very smalk (and also depends somewhat on engrout generally is
values in the vicinity of the well, due to a slowly decaying quite large, and indicates the necessity of using WBK-based
repulsive self-consistent potential. To give a numerical excalculation in order to get valid results.
ample, forn=0.004(which is the typical value ok found in The even- and odd-state initial phases as calculated by the
the first few iterations of the previously developed self-“exact” (MATHEMATICA) and WBK method, denoted by su-
consistent proceduf@]) the wave-function amplitude varies perscriptsMmATH and WBK, respectively, are given in Table
from 10 "® atz=0 to the order of unit at=841 (the right  I. Since the phase is determined to within a factar, neZ,
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T T T T T T TABLE I|. The even-g) and odd-0) state phase&n radiang,
60, ---w-- 0dd states | as calculated by an “exactMATHEMATICA (MATH) and an approxi-
o b i —-—even states | mate WBK approach.
120 b ] N (nmfl) nZATH 77\‘;\/BK 77[(\)/IATH ngVBK
100 F ] 0.004 —0.06458 —0.06301 1.50621 1.50778
I~ 0.006 1.70490 1.70725 —3.00749 —3.00514
80 [ . 0.008 —0.55235 —0.54921 1.01845 1.02159
0.010 3.11954 3.12347 —1.59285 —1.58892
cor ) 0.012 —2.81038 —2.80566 —1.23958 —1.23487
40 F . i 0.014 1.92972 1.93522 —2.78267 —2.77717
'\=‘\‘:-\~:._ 0.016 —0.79858 —0.79230 0.77221 0.77849
20 TR 0.018 1.96615  1.97321 —2.74624 —2.73917
, . . . . . 0.020 —2.10541 -—-2.09756 —0.53462 —0.52676
3000 0005 0010 0015 0020 0025 0030 0.022 —0.29604 —0.28740 1.27475 1.28339
A (nm'l) 0.024 1.21163 1.22106 2.78243 2.79186
0.026 2.48724 249745 —2.22515 —2.21494
FIG. 7. Dependence of quantit®; (which is approximately 0.028 —2.70268 —2.69168 —1.13189 —1.12089
equal the number of digits to be taken in computation, which guar0-030 —1.75529 —1.74350 —0.18450 —0.17271

antees one significant digit of the even-state wave function valué

and slope of the odd-state wave function in the well cgnter the ) ] ) o )
\ parameter in the Morse potential. explored. By comparison with high-precision calculations

performed inMATHEMATICA we have shown that in a class of
the accuracy of this calculation may be judged only from theMorse potentials where plain integration of the Scfinger
absolute error. One can see from Table | that there is googlquation fails, the WBK method delivers reasonably accurate
agreement between the two approaches for all valugs of results for the wave functions. Furthermore, the precision of
considered, more so K is smaller, and hence the potential the conventional calculation required to dett least one
variation slower, which is the usual situation where thesignificant digit in the final result correct is estimated.
WBK approximation works best.
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